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Chapter one
Physics and measurments

Classical Physics: Includes the theories, concept laws and experiments in
classical mechanics, thermodynamics, optics and el ectromagnatism.

Modern physics: The two most important developments in this medern era were
the theories of relativity and quantum mechanics (Einsteins theory of relativity).

Standard of length, mass and time: The three basic quantities are length, mass
and time. An international committee established a set of standards for the
fundamenta quantities of science. It is called the (SI) system international and it
IS units of length, mass and time are the (meter, kilogram and second)
respectively. Other SI standards established by the committee are those for
temperature (the kelvin), electric current (the ampere) luminous intensity (the
candela), and the amount of the substance (the mole).

L ength: The meter was defined as (the distance between two lines on a specific
platinum-iridium bar stored under controlled conditions in france). In 1960, the
meter was defined as (1,650,763.73 wave length of orange-red light emitted from
a krypton 86 Kr® lamp). In 1983, the meter (m) was defined as (the distance
traveled by light in vacuum during a time of 1/299,792,458 second). This last
definition established that the speed of light in vacuum is precisely (299792458
meters per second).

Examples:

e Mean redius of the earth = 6.73* 10°m

e Mean distance from the earth to the moon = 3.84*10°m

e Onelight year = 9.46*10° m

e Sizeof smallest dust particles~ 10* m

e Diameter of a hydrogen atom =~ 10™° m
Mass: The Sl unit of mass, (kg) is defined as (the mass of a specific platinum-
iridum alloy cylinder kept at the international bureau of weights and measures at
sevres, france).
Examples: Sun mass = 1.99* 10* kg, Earth mass= 5.98* 10* kg.
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Time:

Before 1960, the standard of time was defined in terms of (the mean solar day:
defined as the time interval between successive appearances of the sun at the
highest point it reaches in the sky each day).

* The second was defined as (1/60) (1/60)(1/24) of a mean solar day, or, defined
as (9,192,631,1770) times the period of variation from the cesium atom.

* Period: the timeinterval needed for one complete vibration.

Atomic clock, uses the characteristic frequency of the cesium 133 atom as
the reference clock

Customary system: Another system of unitsthat is still used in the USA. In this
system the units of length, mass and time are foot (ft), slug and second
respectively.

Density and atomic mass.

Density (p): isthe mass per unit volume (p= m/v)

Examples: Pauminum = 2.7 ¢/CM°, Prea= 11.39 glom®

Atomic mass: is the mass of a single atom of the element measured in atomic
mass units (u) where: 1u= 1.6605387* 10" kg.

Examples: the atomic mass of |ead= 207u, for aluminum=27u.

The ratio of atomic masses is (207u/27u=7.67), does not correspond to the ratio
of densities (11.3*10%2.7*10°=4.19), this discrepancy is due to the difference in
atomic spacing and atomic arrangements in the crystal structure of the two
elements.

Example: A solid cube of aluminum (p =2.7 g/lem®) has a volume of (0.200 cm®).
It is known that (27.0 g) of aluminum contains (6.02* 10® atoms). How many
aluminum atoms are contained in the cube?
Solution: the mass of cube (m) = pv = (2.7 g/lem®)(0.200 cm®) = 0.540g.
Mempte/ Mazg = Nempie / Nozg —> (0.5400/279) = (Neampie/ 6.02% 107°atoms)
Neample = 1.20* 107 atoms
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Dimensional analysis:

* Used to check the final expression

* Dimentions treated as algebraic quantities. Quantities can be added or
subtracted only if they have the same dimentions. The terms on both sides of an
equation must have the same dimentions. The relationship can be correct only if
the dimentions on both sides of the equation are the same.

Example: check the validity of x = (1/2)at?

Solution: Theright side= (L/T?) T?=L = left side

Example: x = a". t™ where[a"t™] =L =L T°

L/TH"M"=L T° —> " T =L T°

n=landm-2n=0 —>m=2,but(x=a". t"), so that (x = a.t?)

Thisresult differs by afactor of (1/2) from the correct equation x = (1/2) a.t?

 System Aﬁﬁ([}) Volume(L3) [speed (LD a.('CE"lf'er_w“(L]ﬁ}
&L | mr | w3 —mls —mlsz--.---—-,!
0.8 Cudomay |- $¢% | FEZ | Bele = fE)s2 ‘
e ' = |
Conversion:
* Length

1lin=254cm, 1m=39.37in=32811ft, 1ft=0.3048m, 1yd=3ft, 1 ft=
12in, 1 mi = 1.609 km, 1 km = 0.621m, 1 light year = 9.461* 10™° m

* Mass

1 ton=1000kg, 1 kg= 6.852* 10 slug, 1 Sug=14.59 kg

*Time

1 year = 365 days=3.16*10" s,, 1 day= 24 hr =1.44* 10°’min=8.64* 10"s
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Convertion of units:

1 mile=1609 m =1.609 km

1ft=0.3048 m=30.48 cm

1m=39.37in=3.281ft

1in=0.0254 m=2.54 cm

Example: convert 15 in to centimeter

Sloution: 15in (254cm/1in) =38.1cm

Example: A car istraveling at a speed of 38.0 m/s. Isthis car exceeding the speed
limit of 75.0 mil/h ?

Solution: 38.0 m/s (1 mil / 1609 m) = 2.36* 10 mil/s
(2.36*102 mil / s) (60s/ 1 min) (60 min/ 1 hr) = 85.0 mi/hr

i Ii 9.81 N 1 Ibf

(2.20 1bf) | ¥ ] (4.45N)
3 | s
p 1 lbm

8-
3

32.2 Ibf
(143.2 N)

(0.454 k{_,’l v
o 1 kg
MASS (2.20 1bm) 3 '
11i 1 slug or 32.2 Ibm

[P (14.61 kg)

(0.3056 m)

LENGTH

Estimates and order of magnitude calculations:

It is often useful to compute an approximate answer to a given physical problem.
Such approximation is usually based on certain assumptions, which must be
modified if greater precision is needed. We will some times refer to an (order of
magnitude) of a certain quantity as the power of ten of the number that describs
that quantity. We use the symbol,~, for"is on the order of ",
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Thus: 0.0087 ~ 10% & 0.0021 ~ 10° & 740 ~ 10°. The resuilts are reliable to
within about a factor of (10).

Example: Estimate the number of steps a person would take walking from new
york to los angeles?

Solution:

1- The distance between these two cities is about 3000 mil.

2- Each steps covers about 2 ft

3- 1 mil = 5280 ft or 1 mil = 5000 ft

(5000 ft/mil) / (2 ft/steps) = 2500 steps/mil

Steps = (3*10° mi) (2.5* 10° steps/mi) = 7.5* 10° steps ~ 10" steps.

Example: Estimate the number of gallone used each year by all the cars in the
united state?

Solution:

No. of people in the united state ~ 280 million

No. of cars =100 million

Quessing that there are between 2-3 peoplée/car.

Average distance each car travels per year is 10000 mi

Gazoline consumption of 0.05 gal/mi

Each car uses about 500 gal/year

Total consumption = 500 galyr * 100* 10° car = 10'%*5 gal ~ 10" gal/yr

Significant Figures.

When certain quantities are measured, the measured values are known only to
within the limits of the experimental uncertainity. The value of this uncertainity
can depend on various factors such as

1- Quality of apparatus

2- The skill of the experimenter

3- The number of the measurements performed

An example of signifigant figures. suppose that we are asked in a laboratory
experiment to measure the area of a computer disk label using a meter stick as a
measuring instrument. If the length measured to be 5.5 cm and the accuracy to
which we can measure the length of the label is £ 0.1cm. the length lies between
5.4 cm and 5.6 cm. If the label width is 6.4 cm, the actual vaue lies between 6.3
cm and 6.5 cm. Thus we could write the measured values as 5.5 + 0.1 cm and 6.4
+ 0.1 cm. The area of the label is5.5¢6.4 = 35.2 cn?, it is taken as 35 cm?. This
value can range between (5.4*6.3 = 34 cm?) and (5.6*6.5 = 36 cn).

[~}
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Example: Theradius of acircleis measured to be (12 + 0.2) m, Calculate:
a) The areaof circle
b) The circumference of the circle
¢) Give the uncertainity in each value?
Answer .
a) Largeradiusis (12 +0.2) — r; =12.2m & smaller radiusis (11.8) m.
A;=m (r)*=n*(12.2)? = 467.59 m?
A, =m(r,)? = *(11.8)*= 437.43 m?
Average area (A) = (A1 + A,) [ 2=452.51 n?
Uncertainity of areais (452.51+15.08) m?
b) Large circumference (S,) =2nr, = (2* 1 *12.2) =76.65m
Smaller circumference (S;)) =2nr, =(2* 1 *11.8) =74.14 m
Average circumference = (2* 1 *12) = 75.39 m
Uncertainity of circumference=1.26 m



Chap .2

Motion in One Direction

particle model:

A particleis “apoint like object that is an object with mass but having infinitessmal
size”.

For example : to describe the motion of the Earth around the sun , we can treat the
Earth as a particle and obtain reasonably accurate data about its orbit .

This approximation is justified because the radius of the Earth’s orbit is large
compared with the dimensions of the Earth and the sun.

As an example on a much smaller scale, it is possible to explain the pressure
exerted by a gas on the walls of a container by treating the gas molecules as
particles, without regard for the internal structure of the molecules .

To describe the moving object as a particle we can use what is called the (particle
model) .

Position, Velocity and Speed:

The motion of a particle is completely known if the particles position in space is
known at all times. A particle s position is “the location of the particle with respect
to chosen reference point that we can consider to be the origin of a coordinate

system.
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Consider car moving back and forth along the x- axisasin figure(2.1/a). The car is
at (30m) to the right of a road sign which we well use to identify the reference
position (x=0). (Assume all data are known to two significant figures). The initial
position is (3.0 10m) it iswritten in the simpler form (30m) to make the discussion
easier to follow. We will use the particle the model by identifying some point on
the car, perhaps the front door handle.

We start our clock and once every (10s) note the car’s position relative to the sign
at (x=0).

The car moves to the right (which we have defined as the positive direction) (from
A to B), the car is backing up from position through position@ and the
car continues moving to the left and is more than (50m) to the left of the sign
when we stop recording information is as shown in figure. It is called (a position-
time graph).

The displacement of a particle is defined as “ its change in position in some time
interval ”.




AX=Xs - X;

Ax=displacement or change in position of the particle .
X; =initial position, x; =final position
If X > X, — Axispositive if x; <X; — Ax isnegative

* Displacement differ from distance that (distance is length of a path followed by a
particle. Displacement is an example of a vector guantity.

Position, velocity and acceleration also are vectors. In general a vector quantity
requires the specification of both direction and magnitude. By contrast, a scalar
guantity has a numerical value and no direction.

Distance is a scalar quantity and it is always represented as a positive number
while displacement can be either positive or negative.

The average velocity (V) of a particle as (the particle’s displacement Ax divided
by the time interval At during which that displacement occur).

i _Ax
X= At

The unite of (V,) is(m/s) in Sl units.

The average of a particle moving in one direction can be positive or negative
depending on the sing of the displacement.

The slope of the line between the points @ and on the position-time
graph in (fig 2.1/b), represents the ratio (Ax/At) which is defined as
(average velocity).

Ex: the average velocity of the car between points @nd

~ _ (52-30)m

20-0)s =2.2m/s

The terms (speed) and (velocity) are interchangeable. In physics however, thereis
a clear distinction between these two quantities. The (average speed ) of aparticle,




ascalar quantity, is defined as (the total distance traveled divided by the total time
interval required to travel that distance).

Average speed = total distance/ total time

unlike average velocity, average speed has no and hence carrying no algebraic
sign, they have the same units and the magnitude of the average velocity is not the
average speed.

Example

Find the displacement, average velocity and average speed of the car in (fig 2.1/a)
between points d

Solution:

from the position —time graph given in (fig 2.1/b) note that (xo =30m) at (t,=0) ,
and that (x; = - 53m) at (t;=50s).

Ax = —53m — 30m = —83m displacement.

VX _ Ax _ xf—x%' _ xf—xA _ (-53-30)m _ —-83m _ —1.7m/s
At tf—ti tf—tA (50-0)s 50s

To calculate the average speed we need the complete details about the distance

between the points (from @ to is (22m) pl usfrom to@ for atotal of

127 m)
Average speed = 127 m /50 s =2.54 m/s

| nstantaneous velocity and speed

It is the velocity of a particle at a particular instant in time. Consider (fig 2.2/a)
which is a reproduction of the graph in (fig 2.1/b ) The slope of the line (AB)
represent the average velocity.

For the interval during which the car moved from position @position (F)
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15 20 30 40 50 - (s

The slope of the line (AF) represents the average velocity of the interval during
which it moved from @ to @ . which of these two lines do you think is a
closer approximation of the initial velocity of the car ?

The car starts out by moving to the right (positive direction), the value of the
average velocity during the@ t interval is more representative of the initial
value than is the value that is the value of the average velocity during the @t@
interval, which is negative (Ex-1).

Now let us focus on the line and side poi nt to the left along the curve

toward point asin (Fig 2.2/b). The line between points becomes sleeper and
sleeper as the two points become extremely close to gather, the line becomes a
tangent line to the curve. The slope of this tangent line represents the velocity of
the car at the moment we started taking data at point

The instantaneous velocity (V) equals: “the limiting value of the ratio (Ax/At) as
(At) approaches zero”.

[Note: the displacement (Ax) also approaches zero as (At) approaches zero, so that
the ratio look like 0/0. As (Ax) and (At) become smaller and smaller, the ratio
(Ax/At) approaches a value equal to the slope of the line tangent to the (x) versus(t)
curve.

. Ax
V,=lim —
X At—0 At

Thislimit is called the derivative of (x) with respect to (t), written (dx/dt)

5




dx
Vx=lim —
At—0 dt

The instantaneous vel ocity can be positive, negative or zero.

Before poi nt the car is moving toward larger values of (X), (V) is positive so
the slopeis positive. After point , (Vy) isnegative because the slopeis negative,
the car is moving toward smaller values of (X). At the slope and the
Instantaneous vel ocity are zero, the car is momentarily at rest.

The instantaneous speed of a particle is defined as the magnitude of its
Instantaneous vel ocity. It has no direction and hence carries no algebraic sign.

For example if one particle has an instantaneous velocity of (+35m/s) along a given
line and another particle has an instantaneous velocity of (-35m/s) along the same
line, both have a speed of (35m/s).

Ure car use the word velocity to designate instantaneous velocity, Usr car use the
word speed to designate instantaneous speed .

Ex-2

A particle moves along the x-axis. It position vanes with time according to the
expression (x=-4t +2t?) where (x) isin meters and (t) is in seconds. The position-
time graph is shown in (fig 2.3). Note that the particle moves in the negative (x)
direction for the first second of motion, is momentarily at rest at the moment (t=15)
and movesin the positive direction at times (t >19).

a) Determine the displacement of the particle in the time intervals (t=0), to (t=15)
and (t =1stot =3s).




Solu:

During the first time interval, the slopeis
negative and hence the average velocity is
negative.

Thus, we known that the displacement 2
between@ and must be negative. The

|
o ’
displacement between and (D) s _Z_W )
positive . t=ta=0 , t; =ty =1s and x=-4t+2t |

—~8

i 2 <}
. ,(th 2-3) t(s)

Ax 45 = X¢ —X;=Xg — Xp = [—4(1) + 2(1) ?]-[-4(0)+2(0)*]=-2m between t=0

and t=1s.

Betweent =1sand t =3s, t; =tg =1sand t; =tp =3s.

Axp.p = Xf —X=Xp — xg = [~4(3) +2(3) *]-[-4(1)+2(2)]]=+8m
b) Calculate the average velocity during these two time intervals.

. ~ Ax 4, - —2M
Inthefirsttimeinterval Vx5 = =222 = =4 =—— = —2m/s
B—lA

In the second time interval At = tp-tg =3-1=2s

Axp.p 8m
At 2s

Vxpgop = = 4m/s

c¢) Find the instantaneous velocity of the particle at (t = 2.5s).
Solu: By measuring the slope of the line at (t=2.5s) we find that v, =+6m/s

Acceleration

When the velocity of a particle changes with time the particle is said to be

accelerating. How to quantify acceleratain?




Suppose an object that can be modeled as a particle moving aong the x-axis has
initial velocity (V) at time (t;)) and a final velocity (V) at time (t;) as shown in
(fg2.4/a).
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A car modeled as a particle Moving along the x-axis from @to At =t -t
the slope of thelinein (fig 2.4/b) isthe average acceleration (AVy =V V).

The average acceleration (&) of the particle is defined as (the change in velocity
AV, divided by the time interval At during which that change occurs).
~ Avx Vx i in

aX= =

At ot -t

The SI unit of acceleration is (M/s?).

The instantaneous acceleration is defined as “the limit of the average acceleration
as (At) approach (zero) It isequal to :-
_ .. Av, dv,

a = lim =
That is, the instantaneous acceleration equals’ the derivative of the velocity with
respect to time. It is the slope of the velocity-time graph (the slope of the line at
point in fig 2.4/b). If (ay) is positive, the acceleration is in the positive (X)
direction, If (ax) is negative, the acceleration is in the negative (x) direction.
Negative accel eration does not necessarily mean that an object is slowing down. If
the acceleration is negative and the velocity is negative, the object is speeding up.




when the objects velocity and acceleration are in the same direction , the object is
speeding up. On the other hand , when the objects veloaty and acceleration are in
opposite directions , the object is slowing down.

The acceleration 1s caused by force exeried on the object. F < a

Force and acceleration are both vectors and the vectors act in the same direction .It
is very useful to equate the direction of the acceleration to the direction of a force.
We use the term(acceleration to mean(instantaneous acceleration}, and when use
{average) we mean(average acceleration).

The acceleration can also be written.

dv, d ( _d*x
de/  dt?

That is in one-dimensional motion , the acceleration equals the second derivative
of (x) with respect to time.

The acceleration at any time is the slope of the velocity-time graph at that time
positive values of acceleration corresponds to those points in{fig 2.5/a)where the
velocity is increasing in the positive (x) direction. The acceleration reaches a
maximum at time (ta), when the slope of the (velocity-time graph)is a maximum.
The acceleration then goes to zero at time (ig), when the velocity is maxmum
(slope of V,-t graph) is zero. The acceleration is negative when the velocity is
decreasing in the positive (x) direction.

" The instantaneous acceleration

can be obtained from the velocity-

time graph 2
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Connecting points | A and! B . The instantaneous acceleration in E is the
slope of the line tangent to the cﬂnfe at point | B | the acceleration in this example
18 not constant.

One-Dimensional Motion With constant Acceleration

In this case , the average acceleration -
(d.) over any time intrvel is numerically G 51“7""5"\_‘;!;
equal to the instantaneous  acceleration
(a,) at any instant within the interval and
the velocity changes at the same rate
throughout the motion.

If we replace (&;) by (a,) and take (1i=0)
and (tf=t) by any later time (t) , the equ.

*M becomes:- akz_u- OR

!‘_Ii—t

V.=V tat powerful expression

The powerful expression enables us to b
detennma an object’s velocity at any _ | '—'—__T_E[t‘_—"—— el
time (t) uf we know the object’s initial J + - T |
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In{fig 2.7/b) (velocity-time graph) , the slope of the straight line is the constant
slope (a¥=dv,/dt). When the acceleration is constant , the graph of acceleration —
time is a straight line having slope of Zero.

The average velocity in any time interval at constant acceleration .2/ -

(s e

as function uf time when (A, =xrx) and (A= x-x=t-0=1)is:-
xex=Vt=s (Vo + Uyt WP x=xi+d (U + Tt

For (a,= constant) we can obtain another useful expression for the position of the

it is applied only for (ax=constant). The position of an object

partical , moving with constant acceleration .
1 d
ﬂr=I|+E{Vm+{v“|+agé'}t i - "
1 ;
%= %+ Vy 1—2— at’ for [ ax=constant)

The postion-time graph for motion at constant (positive) acceleration shown in
(fig 2.7/a) is a parabola , the slope of the tangent line of this cuwe at (t=0) is aqual
to (Vi) . '

!r;l T

We can obtain an expression for the final velocity that dose not contain time:-

fli—eigl

T —
- #--" i.A'—L-L‘J:f.-. - o E‘t{f-;}-%._f——-ur ) —ﬁ_ﬁ——+-x—h
‘;-"x# Vn 4 20, [ Xe—Xi) J ﬁm: (m_:uws'mwt}_ =

For motion at zero acceleration we see :-
V= V,=V, and x=x+ V.t whena=0

That is when (a,=0) , the velocity of the partl:ai is mnetant and its position
changes linearly with time. LS AR R
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o=
[ these relationships are (kinematic equations) that may ve use to solve any
_problem involving one-dimensional motion at constant acceleration].

Note: for these equations the motion is a long x.axis. ‘
e.g: A car traveling at a constant speed of (45m/s) passes a trooper.
|
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Example: A long-jumper leaves the ground at an angel of (20°)
above the horizontal and at speed of 11.0 m/s.

a) How far does the jump in the horizontal direction?

Solution: X;= Xg = (V;cos0)) tg = (11 n/s) (Cos 20°) tg

Vya =0 at thetop of the jJump

Vyf:VyA = (V, sin Gi)—g* ta

(ay =-0)
0= (11 n/s) sin 20°— 9.8 M/s**t, /m B

t,=0.384S - R

te= 2"t, = 2*0.384 =0.768 S.

Xe = Xg = (11 m/s) (cos 20°) (0.768 S) = 7.94 m
b) What is the maximum height reached
Solution: Yma=Ya = (Visin ©)) ta — (1/2) g*t*s
= (11 m/s) (sin 20°)(0.384 s) — (1/2) (9.8 m/s?)(0.384)>
=0.722m

+»» Uniform circular motion

It is amotion of an object in a circular path with constant speed
(It still has an acceleration).

< The acceleration is called (centripetal acceleration)
a. = ? (perpendicular to the path)

r = circle radious

v = v; = vy (the magnitude of v isthe same)



v —v; Av
tr—t; At

r=nr= T'f
The time required for one complete revolution

_an

v

+» Tangent and radial acceleration

e The velocity change in direction and magnitude.

a; causes the change in the speed

a, tangential component perpendicular to a,

a, = radia component along the radius of model circle.

= d /)
g
d¢

1,2
a, =—a, = % (the change in direction of velocity).
r = radius of curvature

The magnitude of (a) is a = /a2 + a?



The direction of (a) either the same direction of v (if v is
increasing or opposite (if v is decreasing).
¢+ Uniform circular motion where v is constant
a; =0and a = a,
¢ If the direction of v is not changing =
a,=0& ar#0

- —_— — d ay 2 A H
sd=a;+a, = C/iv/ — ”77" (In term of unit vector).
t

¥ = unit vector lying around of the radius vector and

directed radially outward from the center.

© = unit rector tangent to the circle in the direction of

increasing ©.



+» Relative velocity and relative acceler ation

The example of this concept is the motion of a package dropped
from an airplane flying with a constant velocity.

The two vectors are related to each other through the expression

P=74+v,t or F=7—1,t if v, isconstant.

v = Velocity of practical observedinthe 5 frame,
v = Velocity of practical observed inthe s frame

These two equations are caled (Galilean transformation

equations).
dy d dv dv .
—=—— —2=—=0 (because v, isconstant)
de  dg ds ds
. —_ dﬁ dv
v, isconstantanda = — , a = —
ds d¢

Weconclude: @ = d




Example: A stone isthrow from the top of a building upward at

an angle of (30.0°) to the horizontal with an initial speed of
(20.0 m/s) and the height of the building is (45m).
a) How long does the stone take to reach the ground?

Solution:
Vyi = 1,800 = (20.0m/s)(c0s30.0") = 17.3m/s
Vyi = ViS00 = (20.0m/s)(5:,30.0°) = 10.0m/s

. 1
Tofind (t) weuseyy = y; + vy; + antz

1
—45.0m = (10.0m/s)t — 5(9.80771/52)152 =t =4.22s
b) What is the speed of the stone just before it strikes the
ground?
Solu: vy = 10 m/s — (9.80m/s*)(4.22s) = —31.4m/s
Because v, = vy; = 17.3m/s,

Therequired speed is

vp = [Uyxp2, Uyp2 = |/ (17.3)%2 + (31.4)? = 35.9m /s




Examples. a Sky-jumper leaves the sky track moving in the
horizontal direction with speed of (25.0m/s). The landing incline
below him falls off with a slope of (35°). where does he land on
the incline?

Solution:

d = distance travelled along the incline.

Uy =25.0M/s & v,; =0

Xf = Uyt = (25.0m/s)t
1 2 1 2\+2
Vr = vyt + ant = —5(9.8 m/s°)t
xr = dc,s35° & y, =dsin35
d*cos35 = (25?) t and —d sin 35 = —%(9.80m/52) t2

=>d=109m, x; =89.3m, yr = —62.5m




Example: A car exhibits a constant acceleration of (0.3 m/s?)
parallel to the road way. The car passes over arise in the road
such that the top of the rise is shaped like a circle of radius
(500m). at the moment the car is at the top of the rise, it’s
velocity vector is horizontal and has a magnitude of (6.0 m/s).
what is the direction of the total acceleration vector for the car at
thisinstant?

Solution: a, = -v¥r =-(0.6 m/s) / 500m = -0.072 M/’ | a
a=a t+a

The magnitude of ais:

a=(a2+a2)¥? =[(-0.072)% + (0.3)42 = 0.309 /<’

¢ = the angle between (a) and horizontal

¢ =tan™ (a/a) = tan™ (-0.072/0.3) = -13.5°



Example: A boat heading due to the north crosses a wide river
with aspeed of (10.0 km/hr.) relative to the water. The water in
the river has a uniform speed of (5.00 km/hr.) due east relative
to the earth. Determine the velocity of the boat relative to an
observer standing on other bank?

Solution:

V,r = the velocity of the boat relative to the river

Ve = the velocity of theriver relative to earth

Ve = the velocity of the boat relative to earth
Ve =V + Vie

Vie =[(Vi)? + (Ve )3 2 = (10%+ 59Y? = 11.2 km/hr
Thedirection of V,e=0 = tan™ (V,e/ V)

O = 26.6° ( the boat is moving at a speed of 11.2 km/hr

in the direction of 26.60 east of north relative to earth)
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Chapter Five
The Laws of Motions

When severa forces act simultaneously on an object, it's accelerates if the net
force acting on it is not equal to zero.

If the net force exerted on an object is zero, the acceleration of an object is zero
and it’s vel ocity remains constant.

When the velocity is constant (or at rest), the object said to be in equilibrium.
The force may be: 1- Contact forces 2- Field forces

—>
Because force is a vector we use the symbol F and the rules of vector addition to
obtain the net force on an object.

Newton's First Law and Inertial Frames (Law of I nertia)

Newton'sfirst law sometimes called the (law of inertia). This law can be stated as
(if an object does not interact with other objects, it's possible to identify a
reference frame in which the object has zero acceleration).

Another statement of newton's first law is that an object at rest remains at rest and
an object in motion continues in motion with a constant velocity (that is with a
constant speed on a straight line).

Inertia, define as the tendency of an object to resist any attempt to change it's
velocity.

Mass

Mass defined as: the resistance an object exhibits to change in it's velocity.

Weight: the magnitude of the gravitational force exerted on the object, various

with location.

For example: a person who weight 180 Ib on the Earth weight only 30 Ib on the

Moon, on the other hand the mass of an object is the same everywhere.

¢ When a force acting on an object of mass (m;) produces an acceleration

(a1) and the same force acting on another object of mass (m,) produces an
acceleration (a,). Theratio of the two masses is defined as the inverseratio
of the magnitudes of the accelerations produced by the force:

\
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m1/m2 = a2/a1

Newton's Second L aw

The magnitude of the acceleration of an object is inversely proportional to it's

mass.

—
>F=m.a

Compound form
>

—> —>
IF,=m.a, & EF,=m.a, & XF,=m.a >
The unit of forcein Sl systemis (newton)

Newton defined as, the force that when acting on an object of mass (1kg)
produced an acceleration of (1mV/s?). (IN = 1kg.m/s?).

In the US customary system, the unit of force is (pound)
Pound is defined as. the force that, when acting on an object of mass (1sug)
produces an acceleration of (1ft/s?). (11b = 1slug.ft/s?) and (IN = 0.25 I b).

The Gravitational Force and Weight:

Gravitational force (F): is the attractive force exerted by the Earth on an object
and it's directed toward the center of the Earth. It's magnitude called (the weight)
of the object.

Applying newton's second law ):._F> —ma to afreely falling object of mass (m)

s —=> e . —
witha=gandXF=mg weobtan ngm_>

Where (m) called gravitational mass
Note: the kilogram is the unit of mass not unit of weight.

Newton'sthird law:

If two objects interact, the force Fy, exerted by object (1) on object (2), is equa
In magnitude and opposite in direction to the force F,; exerted by object (2) on

object (1) — F1, (action force) = - F,; (reaction force)




University of Anbar Physics

College of Engineering Dr. Ghassan S. Jameel
Dams & Water Resources Eng. Dept. Phase: 1

Semester | (2020-2021)

Objects Experiencing A Net Force:

YFx=ma, =T or a=T/m

The accedleration occursin they direction
Xf,=ma,witha, =0 =%f =0
n+(-Fg) =0 == n=F,
For constant acceleration

Vi = Vi +a t

Vi = Vi + (T/m) t

And X; = X; + Vi t +(1/2).(T/m).t?

Note: n = the normal forceis not always equal to the magnitude of (F)

For example suppose a book is lying on a table and you push down on the book
with aforce F, the book is at rest and therefore not accelerating

n-Fy—F=0 or n=Fg+F Note: (n > Fy)
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Forceof Friction:

When an object is in motion either on a surface or in a viscous medium such as
air or water, there is resistance to the motion because the object interacts with its
surroundings. This resistance caled (force of fraction).

Consider you try to drag atrash can filled with yard clippings across the surface
of your concrete patio figure (a) below it's areal surface not an idealized (friction
less surface), If we apply an external horizonta force (F) to the trash can acting
to the right:

1- the trash can be remain stationary if (F) is small. The force that counteracts
force (F) and keep the trash can from moving acts to the left and is called the
force of friction (fs), aslong as the trash can is not moving (fs = F).

Note: If (F) increased, fs also increases.

2- If we increase the magnitude of (F) asin figure (b), the trash can eventually
slips when (fs) reaches its max value (fs max), asin figurec.

¢
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3- The trash can moves if (F > fs na), When the trash is in motion, the friction
force is caled (force of kinetic friction fy). The net force (F-fy) is in the x-
direction and produces acceleration to the right.

4- If F= f,, the acceleration is zero and the trash can moves to the right with
constant speed.

5- If the force is removed, the friction force acting to the left, provides an
acceleration of the trash in the x-direction and eventually bringsit to rest.

Experimental Observations:

1- The magnitude of the force of static friction between any two surfaces in
contact can have the values: (fs< ps.n) where

U= coefficient of friction (dimensionless constant)

n= the normal force exerted by one surface on the other

When the surfaces are on the average of dlipping, fs = fhax = Hs.n, (impending
motion).

2- The magnitude of the kinetic friction force acting between two surfacesis: fy =

Hk-N
My = coefficient of kinetic friction, it is vary with speed.

3- The vaues of ys and my are depend on the nature of the surfaces, but
generally: (L < Hs).

4- The direction of the friction force on an object is paralel to the surface with
which the object isin contact and opposite to the actual motion (kinetic friction),
or the impending motion (static friction) of the object relative to the surface.

5- The coefficient of friction is independent of the area of contact between the
surfaces.

6- The equations (fs < ns.n) and (fy < nk.n) are not vector equations, they are
relationships between the magnitude of the friction and normal forces. Because
the friction and normal forces are perpendicular to each other, the vectors cannot
be related by a multiplicative constant.
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Examplel: A hockey puck having a mass of (0.3 kg) dlides on the horizonta
frictionless surface of an ice rink. Two hockey sticks strike the puck
simultaneously, exerting the forces on the puck as shown in Figure below.
Determine both the magnitude and direction of the puck's accel eration?

2K, = fxl + fX2 = fl COS(-ZOO) + f2 COS(GO)
F2=8 N
(5.0 N)(0.940) + (8.0 N)(0.5) =8.7 N
XF, = f,, + f,, = f, sin(-20°) + f, sin(60) B0°
(5.0 N)(- 0.342) + (8.0 N)(0.866) = 5.2 N o 20
a, = (Xf,) / (m) =8.7N /0.3 kg = 29 m/s>
(2£) / (m) g | —_—

a, = (Zfy)/(m) =5.2N /0.3 kg = 17 m/s® - |
a=1a% + &, = V(2P + (17°) = 34 m/s’

e = tan™(a,/a,) = tan™(17/29) = 30°
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Example 2: A traffic light weight (122 N) hangs from a cable tied to two other
cables fastened to a support as in Figure-6. The upper cables are not as strong as
the vertical cable and will break if the tension in them exceeds (100 N). Will the

traffic light remains hanging in this situation, or will one of the cables break?

LA A A A S S S A 4

Ty

- = N — N

-n
[[=]
I

xf, =0
Ts- Fg=0
Ts=Fy=122N
From the free body diagram for the knot
YF = Tox = Tax
=T,cos(53)-T,cos(37)=0 ----- (1)
YRy =Ty +Ty+(-122)=0
=T,sin(53) + T, sin (37)-122=0 - - - - - 2)
From equation (1)
T, =1.33 T substitute in equation (2) to obtain
T,=734N & T,=974N
Both of these values are less than (100 N), so the cables will not break
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Example 3: A ball of mass (m;) and a block of mass (m,) are attached by a light
weight cord that passes over africtionless pulley negligible mass (Figure-7). Find
the magnitude of the acceleration of the two objects and the tension in the cord?

pally . 'd' 7

| O RISy |
- [ &, o)
h'.;_;_;_ e 6 ( S |

m

Py — — X |
L ‘ “'.' 9 '
¥l I——
SOL:
Applying newton's second law in component form to the ball
YFx=0----- Q)

For the block
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YFy = M,.g.sinO- T
But

ZFX = m2 a.x = mz.a

Then

[Mo.g.sin@-T =mya] ----- (3)

XF, = n- m,.g.cosO© =0

From equation (2)

T=mpg+mua subineg. (3)
a=(mpg.sin@ —my.g) / (M + my) - - - - - (5)
substitute in eg. (2)

T = (M1.M.g)(sinO+1) / (myg +mMy) - - - - - 6)

IF m,.sin© > m;, the block accelerates down the incline
IF m,.sin© < m;, the acceleration is up the incline for the block and down for the
ball.
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Chapter 6
Circular Motion and Other Applications of Newton's laws

Newton’s Second Law Applied to Uniform Circular Motion

a. = VaIr =

Where (a.): the centripetal acceleration of a particle moving with uniform speed
Consider figure (1), when we apply the newton's second law along the radial
direction, we find that the net force causing the centripetal acceleration can be
eva uated:

XF = m.a. = m(v?/r)

* This force acts toward the center of the circular path and causes a change in the
direction of avelocity vector.
* The force causing centripetal acceleration is called a (centripetal force).

Example 1: A small object of mass (m) is suspended from a string of length (L).
The object revolves with constant speed (v) in a horizontal circle of radius (r).
The system is known as a (conica pendulum). Find the expression of (v)?

TcoS e

. _’_ﬂ e

ymi
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Solution:

Because the object does not accelerate in the vertical direction, XFy =0
Tcose -m.g=0 ——> Tcose =m.g ....... Q)

YF, = ma, = Tsine = m(V/r) ... (2)

Solveeq (1) and (2) ==>tane = v’/g.r or v=r g tane
But r =L sine —=> v=Lg sine tane
So the speed isindependent of the mass of the object.

Example 2: A ball of mass (0.5 kg) is attached to the end of the cord (L = 1.5 m)
long. The ball iswhirled in a horizontal circle as shown in fig-(3). If the cord can
withstand a maximum tension of (50 N). (a) What is the max speed at which the
ball can be whirled before the cord breaks? Assume that the string remains
horizontal during motion. (b) Suppose that the ball is whirled in a circle of larger
radius at the same speed (v), is the cord more likely to break or less likely?

Solution:

()

T=m ) ... (1) and v=+T.r/m

This equation shows that (V) increases with (T) and decreases with larger (m).
Vinax = VTmax(r)/m = V(50 N) (L5 m) / (0.5 kg) = 12.2 m/s

(b) The larger radius means that the change in direction of the velocity vector
will be smaller for a given time interval. Thus the acceleration is smaller and the
required force from the string is small. As a result, the string is less likely to
break when the ball travelsin thein acircle of larger radius.

Ti=mv?/r; or T,=mv?/r,

Tyl To=(MmVPIrg) [ (mvP/r) => T,/ Ti=r1/1,

If wechooser,>r, weseethat T, < T;

* Less tension required to whirl the ball in the larger circle and the string is less
likely to break.
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Example 3: A civil engineer wish to design a curved exit ramp for a highway in
such a way that a car will not have to rely on friction around the curve without

skidding. In other words a car moving at the designated speed can negotiate the
curve even when the road is covered with ice. The roadway is tilted toward the

inside of the curve. Suppose the designated speed for the ramp is to be (13.4 m/s)
and radius of the curveis (50 m). At what angle should the curve be banked?

Solution: Because the ramp is to be designed so that the force of static friction is

zero. Only the component (ny = n sine) causes the centripetal acceleration.

YF, =nsine =m (V/r) ....... (@D m )

XF,=0 =—>ncose=mg ....... (2) : .Wykr_}—‘j _

From equations (1) and (2) k = f \

tane=v°/r.g...... 3 (; “,' ez i

o = tan"[(13.4/ (50*9.8)] = 20.1° ,U_,?tg_
— J,- e

* Note: If acar round the curve at a speed less than (13.4 m/s), friction is needed
to keep it from dliding down the bank (to the left). At speed greater than (13.4
mV/s) friction required to keep it from sliding up the bank (to the right).

7 Vgl
Non Uniform Circular Motion: ’/Ie N N
e, \
: Lt )
s & .
/& :
f_IFF / * ot 1 b
“"m_h_‘_\_ i F'-I‘Jl!“l & Wﬁ
e mg

- |,"III i

L'I'I

* In addition to radia component of acceleration (&), there is a tangentia
component (a;) having a magnitude of (dv/dt).

* Thetotal force exerted on the particleis:

YF =XF, + XF;

* a;: represent the change in the speed of particle with time.
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Example 4. A small sphere of mass (m) is attached to the end of a cord of length
(R) and set into the motion in a vertical circle about a fixed point (0).
(a): Determine the tension in the cord at any instant when the speed of the sphere
is (v) and the cord makes an angle (o) with the vertical? (b): If we set the ball in
motion of a ower speed, what would the ball have as it passes over the top of
the circleif the tension in the goes to zero instantaneously at this point?

Solution:

(@): XF;=m g sine =m a, ——>a, = g sine

XF, = T- m g cose = m(v?/R) or T =m (V¥R + g cose)

(b): At the top of the path where (e = 180°), we have (cos 180°) = -1, s0:
Ttop =m [(Vztop / R) - g]

Letusset Typ=0 == 0=m[(Viep/R) -]

Viep = Vg R

Motion in the Presence of Resistive For ces:

Any medium exerts a resistive force (R) on the object moving through it. The
magnitude of (R) depends on factors such as the speed of the object. The
direction of (R) is always opposite the direction of motion of the object relative to

the medium. e —

Resistive for ce proportion to object speed:

R=-bv where
v = velocity of object

b = constant

(depend on properties of medium and

the shape and dimensions of the object).
For the Fig,Small sphere released from rest.
Yfy=m.g-bv —>mg-bv=m.a
m.g — b.v = m(dv/dt)

dv/dt= g- (bv/m)

where dv/dt = acceleration
* When initially v = 0, the magnitude of resistiveisalso zero =—=>dv/dt =g

or (a=gQ).

* When (R) approaches the sphere’s weight, the acceleration approaches zero. In
this situation, the speed of the sphere approaches it's (terminal speed,vy).

¢
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We can obtain the terminal speed by settinga=dv/dt=0 ==ag-b.V:=0

VT = mg/b

* The expression of of (v)with (v=0) at (t=0) is:
V=mghb (1-e™) — =V;1-e™).

e ©=271828
The time constant (t = m/b), is the time at which the sphere released from rest
reaches (63.2%) of itsterminal speed.
When (t=t), then V = 0.632V ¢
Note: there is (a buoyant force) acting on the submerged object, this force is
constant, and it's magnitude equal to weight of the displaced liquid. This force
change the apparent weight of the sphere by a constant factor.

Example 5: A small sphere of mass (2.0 g) is released from rest in a large vessdl
filled with oil. The sphere reaches aterminal speed of (5.00 cm/s). Determine the
time constant (t) and the time at which the sphere reaches (90.0%) of it’s
terminal speed?

Solution:

Vi=mg/b=>b=mg/V:=[(2.0g* 9.8cm/s)] / [5 cnm/s] =392 g/s
t=m/b=(2gr)/ (392 gm/s) =5.1¥*10° s

To find the time at which the sphere reaches a speed of (0.9V1), we set (v= 0.9vy)
09vr=vr(1-€'?) = €'"=0.1 =>-t/t=In(0.1) =-0.2.3
t=-23*1=23(5.1*10%s) =$=11.710°s=11.7s

Air Dragat High Speed

Theresistiveforceis

R = 0.5 D.p.A.v’ where

p = air density

A = cross sectional area of of the moving particle measured in plane
perpendicular to it’s velocity.

D = drag coefficient (0.5 for spherical object and 2 for irregularly shaped).

* To anayze the motion of an object in free-fall

2F = m.g (Fy, downward gravitational force) = 0.5 D.p.A.v? (upward air resistive
force)

But XF =m.a ——=the object has a downward acceleration of magnitude

[~}



University of Anbar Physics
College of Engineering Dr. Ghassan S. Jameel
Dams & Water Resources Eng. Dept. Phase: 1

Semester 1 (2019-2020)

a=g— (D.p.A/2m) v*
we can calculate the terminal speed by using the fact that, when the gravitational
force is balanced by resistive force, the net force on the object is zero and

therefore it’s acceleration is zero. (a=0)
g-(D. p.A2m) V=0 =>

V1 =1v2m.g)/ (D.p.A)

Object Mass (kg) Cross Sectional Area (m?) V1 (m/s)
Sky Driver 75 0.7 60
Bass Ball (r =3.7 cm) 0.145 4.2¢10° 43
Golf Bl (r =2.1 cm) 0.046 1.4410° 44
Rain Drop (r =0.2 cm) 3.4*107 1.3¥10° 9

Example 6: A pitcher hurls a (0.145 kg) bassball past a batter at (4.02 m/s). Find
the resistive force acting on the ball at this speed?

Solution:

D = (2m.g) / (V*.p.A) = (2*0.145kg* 9.8m/s”) / (43m/s** 1.2kg/m> 4.2* 10°m?)
D =0.305

R = 0.5 D.p.A.v* = 0.5%0.305* 1.2kg/m** 4.2* 10*m?* 40.2m/s?

R=12N




